547 research outputs found

    Left-invariant evolutions of wavelet transforms on the Similitude Group

    Get PDF
    Enhancement of multiple-scale elongated structures in noisy image data is relevant for many biomedical applications but commonly used PDE-based enhancement techniques often fail at crossings in an image. To get an overview of how an image is composed of local multiple-scale elongated structures we construct a multiple scale orientation score, which is a continuous wavelet transform on the similitude group, SIM(2). Our unitary transform maps the space of images onto a reproducing kernel space defined on SIM(2), allowing us to robustly relate Euclidean (and scaling) invariant operators on images to left-invariant operators on the corresponding continuous wavelet transform. Rather than often used wavelet (soft-)thresholding techniques, we employ the group structure in the wavelet domain to arrive at left-invariant evolutions and flows (diffusion), for contextual crossing preserving enhancement of multiple scale elongated structures in noisy images. We present experiments that display benefits of our work compared to recent PDE techniques acting directly on the images and to our previous work on left-invariant diffusions on orientation scores defined on Euclidean motion group.Comment: 40 page

    New Exact and Numerical Solutions of the (Convection-)Diffusion Kernels on SE(3)

    Get PDF
    We consider hypo-elliptic diffusion and convection-diffusion on R3β‹ŠS2\mathbb{R}^3 \rtimes S^2, the quotient of the Lie group of rigid body motions SE(3) in which group elements are equivalent if they are equal up to a rotation around the reference axis. We show that we can derive expressions for the convolution kernels in terms of eigenfunctions of the PDE, by extending the approach for the SE(2) case. This goes via application of the Fourier transform of the PDE in the spatial variables, yielding a second order differential operator. We show that the eigenfunctions of this operator can be expressed as (generalized) spheroidal wave functions. The same exact formulas are derived via the Fourier transform on SE(3). We solve both the evolution itself, as well as the time-integrated process that corresponds to the resolvent operator. Furthermore, we have extended a standard numerical procedure from SE(2) to SE(3) for the computation of the solution kernels that is directly related to the exact solutions. Finally, we provide a novel analytic approximation of the kernels that we briefly compare to the exact kernels.Comment: Revised and restructure

    A functional Hilbert space approach to the theory of wavelets

    Get PDF

    The Stokes boundary value problem

    Get PDF

    Locally Adaptive Frames in the Roto-Translation Group and their Applications in Medical Imaging

    Get PDF
    Locally adaptive differential frames (gauge frames) are a well-known effective tool in image analysis, used in differential invariants and PDE-flows. However, at complex structures such as crossings or junctions, these frames are not well-defined. Therefore, we generalize the notion of gauge frames on images to gauge frames on data representations U:Rdβ‹ŠSdβˆ’1β†’RU:\mathbb{R}^{d} \rtimes S^{d-1} \to \mathbb{R} defined on the extended space of positions and orientations, which we relate to data on the roto-translation group SE(d)SE(d), d=2,3d=2,3. This allows to define multiple frames per position, one per orientation. We compute these frames via exponential curve fits in the extended data representations in SE(d)SE(d). These curve fits minimize first or second order variational problems which are solved by spectral decomposition of, respectively, a structure tensor or Hessian of data on SE(d)SE(d). We include these gauge frames in differential invariants and crossing preserving PDE-flows acting on extended data representation UU and we show their advantage compared to the standard left-invariant frame on SE(d)SE(d). Applications include crossing-preserving filtering and improved segmentations of the vascular tree in retinal images, and new 3D extensions of coherence-enhancing diffusion via invertible orientation scores

    A PDE Approach to Data-driven Sub-Riemannian Geodesics in SE(2)

    Get PDF
    We present a new flexible wavefront propagation algorithm for the boundary value problem for sub-Riemannian (SR) geodesics in the roto-translation group SE(2)=R2β‹ŠS1SE(2) = \mathbb{R}^2 \rtimes S^1 with a metric tensor depending on a smooth external cost C:SE(2)β†’[Ξ΄,1]\mathcal{C}:SE(2) \to [\delta,1], Ξ΄>0\delta>0, computed from image data. The method consists of a first step where a SR-distance map is computed as a viscosity solution of a Hamilton-Jacobi-Bellman (HJB) system derived via Pontryagin's Maximum Principle (PMP). Subsequent backward integration, again relying on PMP, gives the SR-geodesics. For C=1\mathcal{C}=1 we show that our method produces the global minimizers. Comparison with exact solutions shows a remarkable accuracy of the SR-spheres and the SR-geodesics. We present numerical computations of Maxwell points and cusp points, which we again verify for the uniform cost case C=1\mathcal{C}=1. Regarding image analysis applications, tracking of elongated structures in retinal and synthetic images show that our line tracking generically deals with crossings. We show the benefits of including the sub-Riemannian geometry.Comment: Extended version of SSVM 2015 conference article "Data-driven Sub-Riemannian Geodesics in SE(2)

    Diffusion on the 3D Euclidean motion group for enhancement of HARDI data

    Get PDF
    In previous work we studied linear and nonlinear left-invariant diffusion equations on the 2D Euclidean motion group SE(2), for the purpose of crossing-preserving coherence-enhancing diffusion on 2D images. In this paper we study left-invariant diffusion on the 3D Euclidean motion group SE(3), which is useful for processing three-dimensional data. In particular, it is useful for the processing of High Angular Resolution Diffusion Imaging (HARDI) data, since these data can be considered as orientation scores directly, without the need to transform the HARDI data to a different form. In principle, all theory of the 2D case can be mapped to the 3D case. However, one of the complicating factors is that all practical 3D orientation scores are not functions on the entire group SE(3), but rather on a coset space of the group. We will show how we can still conceptually apply processing on the entire group by requiring the operations to preserve the introduced notion of alpha-right-invariance of such functions on SE(3). We introduce left-invariant derivatives and describe how to estimate tangent vectors that locally fit best to the elongated structures in the 3D orientation score. We propose generally applicable techniques for smoothing and enhancing functions on SE(3) using left-invariant diffusion on the group. Finally, we will discuss implementational issues and show a number of results for linear diffusion on artificial HARDI data
    • …
    corecore